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The gain and loss integrals in the Boltzmann equation for a rigid sphere gas are 
evaluated in closed form for a distribution which can be expressed as a linear 
combination of Maxwellians. Application to the Mott-Smith bimodal distribu- 
tion shows that the gain is also bimodal, but the two modes in the gain are less 
pronounced than in the distribution. Implications of these results for simple 
collision models in non-equilibrium flow are discussed. 

1. Introduction 
The collision terms in the Boltzmann equation are represented by integrals 

which are defined for any two given distribution functions. There are many 
situations in which it is useful to know these integrals when both distributions 
are Maxwellian, but with different parameters (the collision terms are zero when 
the parameters are the same). One such situation is the study of the slow mutual 
equilibration of different species in a gas mixture, when each species attains 
a (different) iYIaxwellian distribution by self-collisions. Another, to be discussed 
in detail in the following paper (Narasimha & Deshpande 1969), arises when the 
distribution for a single gas is represented (possibly in some approximation) as 
a linear combination of Maxwellians. 

We show here (in 0 2 )  that for a rigid sphere gas these integrals can be expressed 
in closed form. Apart from the applications mentioned above, this result is of 
much intrinsic interest because it provides insight into the structure of the col- 
lision integrals in a situation involving large departure from equilibrium. In 0 3 
we discuss the implications of the present results for an assessment of collision 
models of the BGK type; a similar evaluation of Monte-Carlo computations of the 
collision integrals will be reported later. 

2. Analysis 

can be written in general as 
The Boltzmann collision integrals for any two distribution functions f i ,  fj 
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where the gain and loss terms are respectively given by 
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(2.1 c )  

Here v is the velocity at  which the integrals are being evaluated, w is the velocity 
of the collision partner, g = v - w is the relative velocity, b is the impact para- 
meter, e is the azimuthal angle and primes denote values after collision (see 
Chapman & Cowling 1960). We use Dw to denote a volume element in w-space. 

I n  the following, we shall represent the Maxwellian distribution by 

where the parameters n,, ui and pi are respectively the number density, gas 
velocity and the inverse square of the most probable thermal speed for the 
distribution. Further, we shall, for brevity, often denote the gain and loss 
integrals for Maxwellians by appropriate subscripts 

etc. The subscripts may refer to different components of a mixture of gases, or to 
different terms in an expansion off into Maxwellians for a single gas.? In either 
case, the total gain or loss will be given by a series whose typical terms are 
proportional to the quantities defined by (2 .3) .  We shall for this reason find it 
convenient to phrase most of the following analysis for the single gas; but at  any 
stage it is easy to interpret the results for a mixture. 

For rigid spheres of diameter a,$ the loss term gj is well known; it is in fact 
calculated by Chapman & Cowling (1960, p. 93)  in their analysis of the depen- 
dence of collision frequency on speed: 

( 2 . 4 ~ )  

where gj = ~ j ( v  - uj), erfx = /: e-12 dt.  (2 .4b)  

This result can be rewritten in a concise and, as we shall see later, more revealing 
form by utilizing the relation between the error function and the confluent hyper- 
geometric function @. Making use of standard transformations and recurrence 
relations for 0 (Erddyi et al. 1953), this alternative expression for 9(F,.) is 

T(F,) = 2+(7r//3j)z$ @ ( 2 ;  #; q) = q F , , q / F , ,  ( 2 . 4 ~ )  

where the second equality follows from the vanishing of the collision integrals 
f(l",F,) for a Maxwellian 4.. 

Proceeding to the calculation of the gain term gij, we first non-dimensionalize 

t How best to make such an expansion in the particular problem of shock structure 

1 In  a mixture of gases, ff represents the mean diameter of the colliding molecules, i, j. 
is the subject of the following paper. 
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all velocities with respect to /It. Using the dynamical relations governing a 
collision between two particles, we can write the velocities after collision as 

V’ = V-kgCOS$, W’ = V-g+kgCOS$, (2 .5 )  
where k is the unit vector along the apse-line and @ is its colatitude with respect. 
to g (the co-ordinate systems we shall find convenient to adopt in velocity space 
are shown in figure 1). It must be remembered that $ depends only on b and g in 
general, and only on b for rigid spheres : 

b = c sin ~. 
Also k depends only on $, E and the direction of g. 

r /  
FIGURE 1. Relative orientation of different co-ordinate systems in velocity space. 

Using (2.5), we obtain 

F,(v’) l$(w’) = F,(v) q(w)  exp (2k. Cg cos $ 
+ 2/Ijicj.g-g2 (cos2$+/Iiisin2$)}, (2.6) 

In  (2.6), E appears only in the term k . C; in fact if we resolve k and C along and 
normal to g and denote the components by the subscripts 11 and I, only kL . C, 
involves E (in the form of a linear combination of sin E and cos E ) .  The integration 
with respect to E in (2.1 b )  is therefore easily performed, using the result 

where cj = v- uj, c = ci-p3ci, pji = pi/& (2.7) 

deexp (k . C 2g cos $) = 2n exp (2gC,, cos2 $) Io(gC, sin 2$), (2.8) 

where I. is the modified Bessel function of the first kind and zeroth-order.? 
t For the many relations involving special functions which we shall have occasion to 

use here, we will not always give a specific reference if the result can be found in volume 2 
of the well-known book by Erddyi et al. (1953). A considerable amount of analysis is how- 
ever involved in the work, and readers interested in obtaining a more general and detailed 
account will find it in Narasimha & Deshpande (1968) and Deshpande & Narasimha (1969). 

35-2 
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Further, as v is fixed during the integration in (2.1 b ) ,  the volume element DW 
can be replaced by the element 

Dg = g2 sin 9 d9  d(p dg, 

adopting a spherical polar co-ordinate system around C (figure 1). Now (p appears 
only in the term ci .  g in (2.6), and by exactly the same argument as in obtaining 
(2.8), we have 

/(;'drpexp (2picj. g )  = 27rexp (2/?i,gcicos9cosa) I,(2pjigcisiii9sina), (2.9) 

where a is the polar angle of cj. Putting (2.8) and (2.9) into (2.1 b )  gives a product 
of the I, functions, from which the terms in s in9  may be separated by the 
convenient expansion 

I,(gC sin 3 sin 211.) Io(2,8jdgcj sin 9 sin a)  

where 2Fl is the usual hypergeometric function, and we have replaced C, in (2.8) 
by Csin9. Now we perform integrations with respect to 9, noting that as 
C,, = Ccos9 the exponentials in (2.8) and (2.9) both contain COSQ, and that each 
term in the series (2.10) is therefore of the form 

(2.11) 
where im(Z) is the modified spherical Bessel function of order m. 

infinite series 
The net result of all these integrations is that we can write 9(Fi, 4)  as the 

dg bdb exp { - g2(cos2 9 +pi,; sin2 9)) 

-m, -m; 1; - ______- 
4/3$ c3 sin2 a 

(pi, ci sin a)2m 
X20-m!Xm 

where 

Up to  this point, no assumption has been made about the molecular model. 
If we assume rigid spheres, b can be replaced by (r sin $, and the integration with 
respect to  g in (2.12) can be completed, using the relation 

S, dt im(at) tp-1 exp ( - y2t2) 

Finally, we note the identity 
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and use the summation formula (Slater 1960) 

Introducing 6-1 = 1 +Pi< tan2 9, (2.14) 

we can write (2.12), after some algebra, as the double integral 

x (D(2; 3; c$?: + ( 1 - 5) $?; + 2<a( 1 - C)$ 1 Wi x Wj I cos @}. (2.15) 

When i = j this clearly reduces to the well-known result for a single Maxwellian, 
already quoted in (2.4). For i + j ,  (2.15) expresses the gain as a weighted integral 
of the result for a single Maxwellian and further shows that 9%j is symmetric: 

5??(4,4) = 9(4,&). (2.16) 

The double integral in (2.15) can be evaluated in closed form as shown in the 
appendix. Taking (A 6) with the expression (2.4) for the loss term, we obtain for 
the total collision integral 

1 #(&q = __ 4$ - {@(l; 4; &+R) - Q(1; 4; &-R))- 2-  Pi Q(2;*; W;) , 
Pi Pj Pi 

(2.17) 
where Q +(W:+W;), R 2  = + ( W ~ - W ~ ) 2 + I W ~ ~ W j l Z ;  (2.18) 

the first two terms in (2.17) give the gain gif and tho last term gives the loss 

=2a2 [2:2 

Fi2Yj. 

3. Results and discussion 
Prom (2.17) we see that to obtain the gain and the loss integrals it is only 

necessary to calculate the relevant hypergeometric function 0. A simple com- 
puter program has been written for doing this, using the well-known series repre- 
sentation when the argument is less than 10, and an asymptotic expansion when 
the argument is larger (Erdblyi et al. 1953). 

Using this program the gain and loss terms have been computed in a few 
different cases, for a Mott-Smith type distribution (Mott-Smith 1951), 

fo = (1--V)Fl+VF!, (3.1) 

where Fl and F2 are the Maxwellian distributions corresponding to the equilibrium 
states of a monatomic gas respectively on the cold and hot side of a normal shock. 
Typical results for a flow Mach number Nl = 10.0, v = 9 are shown in figures 2 
and 3; the distribution (3.1) at these conditions has also been plotted for com- 
parison in figure 2. The most interesting feature of the results is the presence of 
two maxima in the gain, as in the distribution itself, although the supersonic peak 
in the gain is less pronounced. Thus the gain operator smooths the peakiness off to 
an appreciable extent, but not as much as to make it a completely symmetric 
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F I G ~ E  2. The distribution function and the loss term for a Mott-Smith ansatz with 
Y = 4 at MI = 10.0. The curves are labelled by the values of &,, where v, is the velocity 
component normal to v,. __ fo -Wo) /Pl .n i  c2; - - - - 3 fO / l .L l (P l /d .  

1 
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10-3 
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FIGURE 3. The gain term for the same distribution as in figure 2.  
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Maxwellian, as assumed in the BGK model (Bhatnagar, Gross 87, Krook 1954). 
The ratio of the maxima in 9 and in f are shown in figure 4 as a function of the 
shock Mach number Ml. 

FIGURE 4. Ratio of the two maximum values of the distribution and the gain. 
Same conditions as in figure 2. - - - -, asymptotic, M I  + co. 

It is of interest to pursue this question a little further by studying the asympto- 
tic behaviour of 2? and 9 when Ml +- 00. In  this limit we might expect the collision 
terms to exhibit, like f itself, different behaviours near the supersonic peak and 
elsewhere. We therefore consider respectively an ‘inner’ limit defined as the 
process g1 fixed, MI + 00 (to describe the region near the supersonic peak) and 
an ‘outer’ limit defined by g2 fixed, V1 + 00, Ml --f co (to describe the rest of 
velocity space). 

For the distribution (3.1),  the total gain is 
2?(fo,fo) = (1 - v)2 9 1 1  + 2v( 1 - v) ,912  + IMz2. (3.2) 

(3.3) 

In  the inner limit W2 takes the constant value 

g 2  = p h 1  - u2) = @21, 
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say, and it is easily shown from (2.17) that 
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- @( 1,4 ,  Q - R)} exp ( - V; - Wil) + (P/s2) Q,( 2, 3, Wil) exp ( - 2%;) , (3.4) 1 
where ,8 = P2/,4 = O ( M c 2 ) ,  s = nl/n2. 

The leading term in (3.4) comes from gl1. 

expansions for the Q, one obtains the outer expansion of the gain as 
I n  the outer limit V, = O(1) and Vl + 03, and using well-known asymptotic 

7T 

Comparing (3.4) and ( 3 4 ,  we see that the ratio of the peaks in 9 is O(P-l), 
whereas that in f is O(P-8). Thus the gain operator reduces the peakiness by a 
factor of O(P8). In  the BGK model it is assumed that the gain is an isotropic 
Maxwellian with only one maximum; a crude but plausible argument in favour 
of this assumption is the isotropy of two-body scattering in a centre-of-mass 
system for rigid spheres (Liepmann, Narasimha & Chahine 1962). The present 
results demonstrate that the total gain cannot be isotropic, and indeed contains 
two peaks. However, it  must be noted that as the inner solution covers a velocity- 
space volume of O(p3) compared to the outer, the contribution of the inner peak 
in 9 to its integral over v is O(P4) compared to that of the outer solution. Thus, 
in the limit N1 -+ 03, Fl tends to a delta function a t  v = u,, whereas 9, although 
tending to infinity at this point, is weaker than a delta function and contributes 
nothing to the integral in the limit. Whatever success the BGK model can claim 
in describing the gain term must then be attributed to this fact. 

The total collision term $ shows a slightly different behaviour. Again using 
similar methods, we obtain 

+ R { ~ ( l ,  P g, Q + R)  - @(I, 'i, Q -R))-P~w, $,w] (3.6) 

in the inner limit, where the leading term is the loss a t  the supersonic peak, 
F15?(F2). The outer expression is 

Comparison of (3.6) with (3.7) shows that the outer limit of 2 is O(@) times 
the inner limit, i.e. it has the same ordering asfitself, and both limits contribute 
equally to the integral. 

The asymptotic dependence of the ratio of the maxima, as obtained from this 
analysis, is also shown in figure 4. 

S. M. D. acknowledges the award of a University Grants Commission fellow- 
ship during the course of this work. 
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Appendix 
The most convenient way to evaluate the double integral in (2.15) appears to 

be to introduce certain new angular variables and apply the theory of spherical 
harmonics. We therefore put 

(A 1)  1 5 _= cos2 +T, (%'t - %)/2R = cos w ,  

8 ( % ' ~ - % ' ~ ) c o s 7 + I ~ i x ~ j l c o s e s i n r  e RcosO, 

where R is the variable defined by (2.18) and 

cos 0 = cos w cosr + sin w sinr cose. (A 2) 

We further replace the hypergeometric function @ in (2.15) by the integral 
represent ation 

where c is a double loop in the complex t-plane as described by Erdhlyi et al. 
(1953, vol. 2, p. 272). The argument of the hypergeometric function, in the new 
variables introduced here and in (2.18), becomes Q + R cos 0. Introducing (A 3) 
into (2.15) gij can be expressed as a triple integral, involving the term 
exp (Rt cos 0) : 

gij = - i (z . )  -1; do!: d7 sin.rIC dtt(t - 1)-8 exp [t(& + R cos a)]. (A 4) 
Pi Pj 

NOW recalling (A 2), we can obtain from the theory of spherical harmonics the 
expansion 

m +n (n-m)! 
n = ~ m = - n  (n+m). 

exp(Rtcos@)= C (-)"------ I in ( ~ t )  cos me P;(COS 7 )  PF(COS w ) ,  

(A 5 )  

where the P," are the associated Legendre polynomials. The series (A 5 )  is analo- 
gous to the well-known expansion of a plane wave in spherical harmonics (e.g. 
Morse & Feshbach 1953, p. 1466). We now earry out successively the integrations 
in 0 and r in (A4); using the familiar orthogonality relations for the PF, i t  will 
be found that only the term corresponding to n = 0 in (A 5) makes a contribution 

Ion dr sin 71; deexp (Rt COB 0) = 2ni,(Rt). 

Putting this in (A 4) and noting that 

i,(Rt) = (Rt)-lsinh Rt, 

we will obtain two integrals of the type (A 3). Expressing these back in terms of 
hypergeometric functions, we have the final result 
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